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Abstract: The main objective of our project is to design a 32 bit Arithmetic Logic Unit which is a digital circuit 

that performs arithmetic and logical operations using VHDL. The ALU is a fundamental building block of the 

central processing unit (CPU) of a computer, and even the simplest microprocessors contain one for purposes 

such as maintaining timers. The processors found inside modern CPUs and graphics processing units (GPUs) 

accommodate very powerful and very complex ALUs; a single component may contain a number of ALUs. This 

behavioral design can be made synthesizable and thus can be used for layout and fabrication on FPGA based 

digital circuits. 

 

I. INTRODUCTION 
The Arithmetic Logic Unit (ALU) is a fundamental building block of the Central Processing Unit 

(CPU) of a computer. Even one of the simplest microprocessor contains one ALU for purposes such as 

maintaining timers. We can say that ALU is a core component of all central processing unit within in a 

computer and is an integral part of the execution unit. ALU is capable of calculating the results of a wide variety 

of basic arithmetical and logical computations. The ALU takes as input the data to be operated on (called 

operands) and a code from the control unit indicating which operation to perform. The output is the result of the 

computation. The ALU implemented will perform the following operations: 

 Arithmetic operations (addition, subtraction, increment, decrement, transfer). 

 Logic operations (AND, NOT, OR, NAND, NOR, EX-OR, EX-NOR).  

A digital system can be represented at different levels of abstraction. This keeps the description and design of 

complex systems manageable. The highest level of abstraction is the behavioral level that describes a system in 

terms of what it does (or how it behaves) rather than in terms of its components and interconnection between 

them. 

Here the 32- bit ALU is implemented by using the behavioral modeling style to describe how the operation of 

ALU is being processed. This is accomplished by using a hardware description language VHDL. 

The behavioral style makes use of a process statement. A process statement is the main construct in 

behavioral modeling that allows using sequential statements to describe the behavior of a system over time. 

Process is declared within architecture and is a concurrent statement. However, the statements inside a process 

are  

 

II. PROPOSED SYSTEM 
Digital design is an amazing and very broad field. The applications of digital design are present in our 

daily life, including computers, calculators, video cameras etc. The VHDL (VHSIC Hardware Description 

Language) has become an essential tool for designers in the world of digital design. This paper presents 

implementation of a 32-bit Arithmetic Logic Unit (ALU) using VHDL. Here the behavioral VHDL model of 

ALU is designed to perform 16 operations which includes both logical and arithmetic operations. 

The Arithmetic Logic Unit (ALU) is a fundamental building block of the Central Processing Unit 

(CPU) of a computer. Even one of the simplest microprocessor contains one ALU for purposes such as 

maintaining timers. We can say that ALU is a core component of all central processing unit within in a 

computer and is an integral part of the execution unit. ALU is capable of calculating the results of a wide variety 

of basic arithmetical and logical computations. The ALU takes as input the data to be operated on (called 

operands) and a code from the control unit indicating which operation to perform. The output is the result of the 

computation. The ALU implemented will perform the following operations: 

 Arithmetic operations (addition, subtraction, increment , decrement , transfer) 

 Logic operations (AND, NOT, OR, NAND, NOR, EX-OR, EX-NOR) . 

A digital system can be represented at different levels of abstraction. This keeps the description and design of 

complex systems manageable. The highest level of abstraction is the behavioral level that describes a system in 

terms of what it does (or how it behaves) rather than in terms of its components and interconnection between 

them. 

Here the 32- bit ALU is implemented by using the behavioral modeling style to describe how the operation of 
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ALU is being processed. This is accomplished by using a hardware description language VHDL. 

The behavioral style makes use of a process statement. A process statement is the main construct in 

behavioral modeling that allows using sequential statements to describe the behavior of a system over time. 

Process is declared within an architecture and is a concurrent statement. However, the statements inside a 

process are executed sequentially. A process do read and write signals and values of the interface (input and 

output) ports to communicate with the rest of the architecture just like other concurrent statements. 

 

III. TO MIGRATE A PROJECT 

 In the ISE 12 Project Navigator, select File > Open Project. 

 In the Open Project dialog box, select the .xise file to migrate. 

Note: You may need to change the extension in the Files of type field to display .npl (ISE 5 and ISE 6 software) 

or .ise (ISE 7 through ISE 10 software) project files. 

 In the dialog box that appears, select Backup and Migrate or Migrate Only. 

 The ISE software automatically converts your project to an ISE 12 project. 

Note: If you chose to Backup and Migrate, a backup of the original project is created at 

project_name_ise12migration.zip. 

 Implement the design using the new version of the software. 

Note: Implementation status is not maintained after migration. 

 

IV. OPERATING SYSTEM SUPPORT 

Xilinx officially supports Microsoft Windows, Red Hat Enterprise 4, 5, & 6 Workstations (32 & 64 bits) 

and SUSE Linux Enterprise 11 (32 & 64 bits). Certain other GNU distributions can run Xilinx ISE Web Pack 

with some modifications or configurations, including Gentoo Linux, Arch Linux, FreeBSD and Fedora. 

1.1Properties: 

For information on properties that have changed in the ISE 12 software, see ISE 11 to ISE 12 Properties 

Conversion. 

1.2 IP Modules: 

If your design includes IP modules that were created using CORE Generator software or Xilinx Platform Studio 

(XPS) and you need to modify these modules, you may be required to update the core. However, if the core net 

list is present and you do not need to modify the core, updates are not required and the existing netlist is used 

during implementation. 

1.3Design Panel: 

Project Navigator manages your project based on the design properties (top-level module type, device type, 

synthesis tool, and language) you selected when you created the project. It organizes all the parts of your design 

and keeps track of the processes necessary to move the design from design entry through implementation to 

programming the targeted Xilinx device. For information on changing design properties, see Changing Design 

Properties.  

You can now perform any of the following:  

1. Create new source files for your project. 

2. Add existing source files to your project.  

3. Run processes on your source files. Modify process properties. 

 

 
Figure 1:Design Panel 

 

 New project in ISEUsing Language Templates (VHDL).The next step in creating the new source is to add the 

behavioral description for the counter. To do this you will use a simple counter code example from the ISE 

Language,Templates and customize it for the counter design. 

http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Red_Hat_Enterprise_Linux
http://en.wikipedia.org/wiki/32_bit
http://en.wikipedia.org/wiki/64_bit
http://en.wikipedia.org/wiki/SUSE_Linux_Enterprise_Desktop
http://en.wikipedia.org/wiki/32-bit
http://en.wikipedia.org/wiki/64-bit
http://en.wikipedia.org/wiki/Gentoo_Linux
http://en.wikipedia.org/wiki/Arch_Linux
http://en.wikipedia.org/wiki/FreeBSD
file:///F:\ise_r_properties_conversion.htm
file:///F:\ise_r_properties_conversion.htm
file:///F:\ise_r_properties_conversion.htm
file:///F:\pn_p_changing_design_properties.htm
file:///F:\pn_p_changing_design_properties.htm
file:///F:\pn_p_changing_design_properties.htm
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1. Place the cursor just below the begin statement within the counter architecture. 

2. Open the Language Templates by selecting Edit 

Language Templates 

Note: You can tile the Language Templates and the counter file by selecting                                                                  

Vertically to make them both visible. 

3. Using the “+” symbol, browse to the following code example:VHDL  

 Synthesis Constructs  

 Coding Examples  

 Counters  

 Binary  

 Up/Down Counters  

 Simple Counter 

 

4. With Simple Counter selected, select Edit Use in File, or select the Use Template in File toolbar button. This 

step copies the template into the counter source file. 

5. Close the Language Templates.Final Editing of the VHDL Source 

1. Add the following signal declaration to handle the feedback of the counter output below the architecture 

declaration and above the first begin statement: signal count_int: std_logic_vector (3 downto 0):"0000"; 

2. Customize the source file for the counter design by replacing the port and signal name Place holders with the 

actual ones as follows: 

 replace all occurrences of <clock> with CLOCK 

 replace all occurrences of <count_direction> with DIRECTION 

 replace all occurrences of <count> with count_int 

3. Add the following line below the end process; statement:COUNT_OUT <= count_int; 

4. Save the file by selecting File Save.When you are finished, the counter source file will look like the 

following: 

Library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

-- Uncomment the following library declaration if instantiating 

-- Any Xilinx primitive in this code. 

--library UNISIM; 

--use UNISIM.VComponents.all; 

Entity counter is 

Port (CLOCK: in STD_LOGIC; 

DIRECTION: in STD_LOGIC; 

COUNT_OUT: out STD_LOGIC_VECTOR (3 downto 0)); 

End counter; 

Architecture Behavioral of counter is 

Signal count_int : std_logic_vector(3 downto 0) := "0000"; 

Begin 

Process (CLOCK) 

Begin 

If CLOCK='1' and CLOCK „event then 

If DIRECTION='1' then 

count_int <= count_int + 1; 

else 

count_int <= count_int - 1; 

End if; 

End if; 

End process; 

COUNT_OUT <= count_int; 

End Behavioral; 

You have now created the VHDL source for the tutorial project. Skip past the Verilog Sections below, and 

proceed to the “Checking the Syntax of the New Counter Module “section. 
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V. DESIGN OF 32-BIT ALU 

When designing the ALU we will follow the principle "Divide and Conquer" in order to use a modular 

design that consists of smaller, more manageable blocks, some of which can be re-used. Instead of designing the 

4-bit ALU as one circuit we will first design one bit ADDER, SUBTRACTOR, OR, AND, NOT, XOR, LEFT 

SHIFT, RIGHT SHIFT UNIT. These bit-slices can then be put together to make a 32-bit ADDER, 

SUBTRACTOR, OR, AND, NOT, XOR, LEFT SHIFT, RIGHT SHIFT UNIT. 

5.1 32 bit Arithmetic unit: 

An Arithmetic unit does the following task: Addition, Addition with carry, Subtraction, Subtraction 

with borrow, Decrement, Increment and Transfer function. Now first of all we start with making one bit Full 

Adder, then a 4-bit Ripple Carry Adder using four numbers of Full Adder and at last a 32-bit Ripple Carry 

Adder using eight numbers of 4-bit Ripple Carry Adder. Then we have designed thirty two numbers of single-

bit 4:1 Multiplexer. The diagram of a 32-bit Arithmetic Unit is shown in Fig. 6. The circuit has a 32-bit parallel 

adder and thirty two multiplexers for 32-bit arithmetic unit. There are two 32-bit inputs A and B and 33-bit 

output is RESULT. The size of each multiplexer is 4:1. The two common selection lines for all thirty two 

multiplexers are S0 and S1. C_in is the carry input of the parallel adder and the carry out is Cout. The thirty two 

inputs to each multiplexer are B- value, Complemented B-value, logic-0 and logic-1. 

The output of the circuit is calculated from the following arithmetic sum: 

RESULT = A + Y + Cin 

Where A is a 32-bit number, Y is the 32-bit output of multiplexers and Cin is the carry input bit to the parallel 

adder. 

When S1S0 = 00:  if Cin = 0 then RESULT = A+B i.e. Addition.                        if 

Cin = 1 then RESULT = A+B+1 i.e. Addition with carry. 

When S1S0 = 01:  if Cin = 0 then RESULT = A-B i.e. Subtraction. 

                             if Cin = 1 then RESULT = A-B+1 i.e. Subtraction with borrow. 

When S1S0 = 10: if Cin = 0 then RESULT = A-1 i.e. Decrement. 

                             if Cin = 1 then RESULT = A i.e. Transfer. 

When S1S0 = 11: if Cin = 0 then RESULT = A i.e. Transfer. 

                             if Cin = 1 then RESULT = A+1 i.e Increment. 

 

 
Figure 2: 32 bit Arithmetic unit 

 

5.2 32 bit Logic Unit: 

A Logic unit does the following task: Logical AND, Logical OR, Logical XOR and Logical NOT 

operation. We will design a logic unit that can perform the four basic logic micro-operations: OR, AND, XOR 

and Complement, because from these four micro-operations, all other logic micro-operations can be derived. A 

one-stage logic unit for these four basic micro-operations is shown in the Fig. 7. The logic unit consists of four 

gates and a 4:1 multiplexer. The outputs of the gates are applied to the data inputs of the multiplexer. Using to 

selection lines S0 and S1 one of the data inputs of the multiplexer is selected as the output. For a logic unit of 32-

bit, the output will be of 33-bit with 33th bit to be High-impedance. The common selection lines are applied to 

all the stages. 

 

When S1S0 = 00: RESULT = A.B i.e AND operation 

When S1S0 = 01: RESULT = A+B i.e OR operation. 

When S1S0 = 10: RESULT = A⨁B i.e XOR operation 

When S1S0 = 11: RESULT = ~A i.e NOT operation. 
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Figure 3: 32 bit Logic unit. 

 

5.3   32 bit Shifter Unit: 

Shifter unit is used to perform logical shift micro-operation. The shifting of bits of a register can be in 

either direction- left or right. A combinational shifter unit can be constructed as Fig. 7. The content of a register 

that has to be shifted first placed onto common bus. This circuit uses no clock pulse. When the shifting unit is 

activated the register is shifted left or right according to the selection unit. For a shift unit of 32-bit, the output 

will be of 33-bit with 33th bit to be the outgoing bit. The circuit of shift unit is shown in Fig. 7.3. 

When S1= 0:  RESULT= Shift Right A. 

When S1= 1:  RESULT= Shift Left A. 

 
Figure 4: 32 bit shifter unit 

 
Figure 5: 32 bit right shift operation. 

 

 5.4 32 bit Arithmetic and logic unit:  

The approach used here is to split the ALU into three modules, one Arithmetic, one Logic and one Shift 

module. The arithmetic, logic and shifter units introduced earlier can be combined into ALU with common 

selection lines. The shift micro-operations are often performed in a separate unit, but sometimes the shifter unit 

made part of overall ALU. Since the ALU is composed of three units, namely Arithmetic, Logic and Shifter 

Units. For 32-bit ALU a 33 bit 4:1 MUX is needed. A particular arithmetic or logic or shift operation is selected 

according to the selection inputs S0 and S1. The final output of the ALU is determined by the set of multiplexers 

with selection lines S2 and S3. The function table for the ALU is shown in the Table. 1. The table lists 14 micro-

operations: 8 for arithmetic, 4 for logic and 2 for shifter unit. For shifter unit, the selection line S1 is used to 

select either left or right shift micro-operation. 

 

 
Figure 6: 32 bit arithmetic and logic unit. 



VLSI Design and Implementation of Arithmetic and Logic Unit Using VHDL  

www.ijeijournal.com             Page | 77 

VI. RESULTS 

6.1Simulation Results: 

Here we have taken the inputs as i_a = 12345678 and i_b = 87654321. Both the inputs are taken in Hexadecimal 

 
Figure 7: Transfer result when Cin = 0. 

 

 
Figure 8: Increment result 

 

VII. CONCLUSION AND FUTURE SCOPE 

This paper suggests the behavioral design method for VHDL implementation of a 32-bit ALU using 

Xilinx 9.2i. Its functionality was discussed for all the operations specified. As per the nature of behavioral 

description, it is easy to convert the precision to 64- bit or more. This behavioral design can be made 

synthesizable and thus can be used for layout and fabrication on FPGA based digital circuits. 

In computing, an Arithmetic and logic unit is a digital circuit that performs arithmetic and logic 

operations. It will find its requirement in the field of Nanotechnology. Commercially it would be very useful in 

the smart mobile phones and calculating devices 
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